An elementary treatise on electricity

Maxwell James Clerk
Title: An elementary treatise on electricity

Author: Maxwell James Clerk

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.
Clarendon Press Series

AN ELEMENTARY TREATISE ON ELECTRICITY

MAXWELL
London
HENRY FROWDE

OXFORD UNIVERSITY PRESS WAREHOUSE

7 PATERNOSTER ROW
Clarendon Press Series

AN

ELEMENTARY TREATISE

ON

ELECTRICITY

BY

JAMES CLERK MAXWELL, M.A.

LL.D. EDIN., D.C.L., F.R.S. LONDON AND EDINBURGH
HONORARY FELLOW OF TRINITY COLLEGE,
AND PROFESSOR OF EXPERIMENTAL PHYSICS IN THE UNIVERSITY OF CAMBRIDGE

EDITED BY

WILLIAM GARNETT, M.A.

FORMERLY FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE

Oxford

AT THE CLARENDON PRESS

1881

[All rights reserved]
EDITOR'S PREFACE.

Most of the following pages were written by the late Professor Clerk Maxwell, about seven years ago, and some of them were used by him as the text of a portion of his lectures on Electricity at the Cavendish Laboratory. Very little appears to have been added to the MS. during the last three or four years of Professor Maxwell's life, with the exception of a few fragmentary portions in the latter part of the work. This was partly due to the very great amount of time and thought which he expended upon editing the Cavendish papers, nearly all of which were copied by his own hand, while the experimental investigations which he undertook in order to corroborate Cavendish's results, and the enquiries he made for the purpose of clearing up every obscure allusion in Cavendish's MS., involved an amount of labour which left him very little leisure for other work.

When the MS. came into the hands of the present Editor, the first eight chapters appeared to have been finished and were carefully indexed and the Articles numbered. Chapters IX and X were also provided with tables of contents, but the Articles were not numbered, and several references, Tables, etc., were omitted as well as a few sentences in the text. At the end of the table of contents of Chapter X three points to be treated were mentioned, viz.:—the Passage of Electricity at the surfaces of insulators; Conditions of spark, etc.; Electrification by pressure, friction, rupture, etc.: no Articles corresponding to these headings could be found in the text. Some portions of Chapters IX and X formed separate bundles of MS., and
there was no indication of the place which they were intended to fill. This was the case with Arts. 174–181 and 187–192. Arts. 194–196 and 200 also formed a separate MS. with no table of contents and no indication of their intended position.

It was for some time under consideration by the friends of Professor Maxwell, whether the MS. should be published in its fragmentary form or whether it should be completed by another hand, so as to carry out as far as possible the author's original design; but before any decision had been arrived at it was suggested that the book might be made to serve the purposes of students by a selection of Articles from Professor Maxwell's *Electricity and Magnetism*, so as to make it in a sense complete for the portion of the subject covered by the first volume of the last-mentioned work. In accordance with this suggestion, a number of Articles have been selected from the larger book and reprinted. These are indicated by a * after the number of the Article. Arts. 93–98 and 141 are identical with Arts. 118–123 and 58 of the larger treatise, but these have been reprinted in accordance with directions contained in Professor Maxwell’s MS.

In the arrangement of the Articles selected from the *Electricity and Magnetism* care has been taken to interfere as little as possible with the continuity of the MS. of the present work, and in some cases logical order has been sacrificed to this object, so that some subjects which are treated briefly in the earlier portions are reintroduced in the latter part of the book. In Chapter XII some articles are introduced from the larger treatise which may appear somewhat inconsistent with the plan of this book; this has been for the sake of the practical value of the results arrived at. The latter part of the note on pages 149 and 150 may be taken as Professor Maxwell's own comment on the method proposed in Art. 186 written a few years subsequently to that Article.

All references, for the accuracy of which Professor Maxwell is not responsible, and all Tables, notes, or interpolations in-
sented by the Editor, are enclosed in square brackets. This system has not been carried out in the table of contents, but the portion of this contained in Professor Maxwell’s MS. is stated above.

Of the Author’s Preface the portion here given is all that has been found.

W. G.

Cambridge,
August, 1881.
FRAGMENT OF AUTHOR'S PREFACE.

The aim of the following treatise is different from that of my larger treatise on electricity and magnetism. In the larger treatise the reader is supposed to be familiar with the higher mathematical methods which are not used in this book, and his studies are so directed as to give him the power of dealing mathematically with the various phenomena of the science. In this smaller book I have endeavoured to present, in as compact a form as I can, those phenomena which appear to throw light on the theory of electricity, and to use them, each in its place, for the development of electrical ideas in the mind of the reader.

In the larger treatise I sometimes made use of methods which I do not think the best in themselves, but without which the student cannot follow the investigations of the founders of the Mathematical Theory of Electricity. I have since become more convinced of the superiority of methods akin to those of Faraday, and have therefore adopted them from the first.

In the first two chapters experiments are described which demonstrate the principal facts relating to electric charge considered as a quantity capable of being measured.

The third chapter, 'on electric work and energy,' consists of deductions from these facts. To those who have some acquaintance with the elementary parts of mathematics, this chapter may be useful as tending to make their knowledge more precise. Those who are not so prepared may omit this chapter in their first reading of the book.

The fourth chapter describes the electric field, or the region in which electric phenomena are exhibited.
CONTENTS.

CHAPTER I.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Exp. I. Electrification by friction</td>
</tr>
<tr>
<td>2.</td>
<td>" II. Electrification of a conductor</td>
</tr>
<tr>
<td>3.</td>
<td>" III. Positive and negative electrification</td>
</tr>
<tr>
<td>4.</td>
<td>" IV. Electrophorus</td>
</tr>
<tr>
<td>5.</td>
<td>Electromotive force</td>
</tr>
<tr>
<td>6.</td>
<td>Potential</td>
</tr>
<tr>
<td>7.</td>
<td>Potential of a conductor</td>
</tr>
<tr>
<td>8.</td>
<td>Of metals in contact</td>
</tr>
<tr>
<td>9.</td>
<td>Equipotential surfaces</td>
</tr>
<tr>
<td>10.</td>
<td>Potential, pressure, and temperature</td>
</tr>
<tr>
<td>11.</td>
<td>Exp. V. Gold-leaf electroscope</td>
</tr>
<tr>
<td>12.</td>
<td>" V. Gold-leaf electroscope—continued</td>
</tr>
<tr>
<td>13.</td>
<td>Quadrant electrometer</td>
</tr>
<tr>
<td>14.</td>
<td>Idio- and Hetero-Static</td>
</tr>
<tr>
<td>15.</td>
<td>Insulators</td>
</tr>
<tr>
<td>16.</td>
<td>Apparatus</td>
</tr>
</tbody>
</table>

CHAPTER II.

ON THE CHARGES OF ELECTRIFIED BODIES.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Exp. VI. Electrified body within a closed vessel</td>
</tr>
<tr>
<td>18.</td>
<td>" VII. Comparison of the charges of two bodies</td>
</tr>
<tr>
<td>19.</td>
<td>" VIII. Electrification of inside of closed vessel equal and opposite to that of enclosed body</td>
</tr>
<tr>
<td>20.</td>
<td>" IX. To discharge a body completely</td>
</tr>
<tr>
<td>21.</td>
<td>" X. To charge a body with a given number of times a particular charge</td>
</tr>
<tr>
<td>22.</td>
<td>Five laws of Electrical phenomena</td>
</tr>
</tbody>
</table>

I. In insulated bodies.

II. In a system of bodies during conduction.

III. In a system of bodies during electrification.

IV. Electrification of the two electrodes of a dielectric equal and opposite.

V. No electrification on the internal surface of a conducting vessel.
CONTENTS.

CHAPTER III.

ON ELECTRICAL WORK AND ENERGY.

Art. Page
23. Definitions of work, of energy, of a conservative system ... 22
24. Principle of conservation of energy. Examples of the measurement of work ... 23
25. Definition of electric potential ... 23
26. Relation of the electromotive force to the equipotential surfaces 24
27. Indicator diagram of electric work ... 25
28. Indicator diagram of electric work—continued ... 25
29. Superposition of electric effects ... 26
30. Charges and potentials of a system of conductors ... 27
31. Energy of a system of electrified bodies ... 28
32. Work spent in passing from one electrical state to another ... 29
33. \[P = \frac{dQ}{dE} \] ... 29
34. \(\Sigma (E'P) = \Sigma (E'P) \);—Green's theorem ... 30
35. Increment of energy under increments of potentials ... 30
36. \[E = \frac{dQ}{dP} \] ... 31
37. Reciprocity of potentials ... 31
38. Reciprocity of charges ... 32
39. Green's theorem on potentials and charges ... 32
40. Mechanical work during the displacement of an insulated system 33
41. Mechanical work during the displacement of a system the potentials of which are maintained constant ... 34

CHAPTER IV.

THE ELECTRIC FIELD.

42. Two conductors separated by an insulating medium ... 36
43. This medium called a dielectric medium, or, the electric field ... 36

EXPLORATION OF THE ELECTRIC FIELD.

44. Exp. XI. By a small electrified body ... 37
45. Exp. XII. By two disks ... 38
46. Electric tension ... 39
47. Exp. XIII. Coulomb's proof plane ... 39
48. Exp. XIV. Electromotive force at a point ... 41
49. Exp. XV. Potential at any point in the field. Two spheres 41
50. Exp. XVI. One sphere ... 42
51. Equipotential surfaces ... 42
52. Reciprocal method. Exp. XVII. ... 42