Mistakes and disputed points in music and music teaching

Elson Louis Charles
PREFACE

This little book presents a phase (or rather several phases) of Music which has as yet received but little attention. It may serve a twofold purpose. Firstly, it may aid the young teacher in some cases where authorities contradict each other. Secondly, it may call attention to the great need of more unification in Music and to the difficulties in the path of attaining it.

It has been judged best not to discuss the question of a Movable or a Fixed “Do” in Vocal Music, for here the opposing views are fairly well known to every musician.

LOUIS C. ELSON.
CONTENTS

CHAPTER I
MISTAKES IN ACOUSTICS

Acoustics.—Sound.—Effect of Atmosphere.—Animals and Music.—Color and Tone.—Compass in Music.—Definite Emotions of Keys.—Pure Tone.—Pitch.—Concert Pitch.—Tablature.—Synchronism.—Sympathy of Vibrations.—Architectural Acoustics. .. 7

CHAPTER II
ORCHESTRAL ERRORS

Compass of Orchestra.—Orchestral Keys.—Scale Forms.—Gregorian Tones.—Size of Orchestra.—Keys in Orchestral Scores.—Catgut.—Improvement of Violins by Age.—Material of Wind Instruments.—Slide and Valve Trombone.—Conducting with Baton.—Violoncello.—Composers as Conductors.—Obbligato.—Conductors as Performers.—Works on Instrumentation.—Symphony.—Clarinet.—Beating Time. 27

CHAPTER III
MISTAKES IN TEACHING

American Fingering.—Language of Musical Terms.—Pedaling.—Trills.—Turns.—Mordents.—Grace Notes.—Appoggiatura in Recitative. .. 44

CHAPTER IV
ACCENTS

Natural Accents.—Artificial Accents.—Rf. and Rfz.—Staccato.—Thesis and Arsis.—Portamento.—Piano Touch.—Overmarkings of Shading. .. 56
Contents

CHAPTER V
ERRORS OF NOTATION

Clefs.—Repeat Marks.—Whole Rests.—Double Whole Rests.—Groups of Rests.—Change of Notation of Rests.—Notation of Smaller Rests.—Numerals in Connection with Rests.—Notation of Sharps and Naturals Faulty.—Laws of Accidentals.—Over Use of Accidentals.—Probable Further Changes.—The Name "Natural."—Step and Half-step.—Artificial Groups.—Sextolets Wrongly Notated.—Long Slurs 66

CHAPTER VI
TEMPO AND RHYTHM

Time.—Tempo Marks.—Tempo in Old Music.—Andante and Andantino.—Metronome.—Language in Tempo and Expression Marks.—Tempo Rubato.—Counting of Rhythms.—Characters of Rhythms.—Alla Breve.—Old Notation.—English Church Music.—Other Rhythm Marks.—Stopped Diapason... 89

CHAPTER VII
MISTAKES CONNECTED WITH MUSICAL FORMS

Repeats in Sonata-Allegro.—Phrases and Periods.—Theme.—Terminology in Sonata.—Coda.—Five-division Song-form.—Two-part Song-form.—Fugal Nomenclature.—Strophe-form.—General Mispronunciations.—Mispronunciations of Composer's Names.—Names Frequently Mispronounced 103

CHAPTER VIII
VOCAL ERRORS AND DOUBTFUL POINTS

The Tremolo.—What is a Good Vocal Language?—Pronunciation of Latin.—Compass of Children's Voices.—What Constitutes a Musical Child?—Chorus Breath Marks.—The Study of Metre.—Alterations of Words.—Errors in Translation. 114
Contents

CHAPTER IX
PHYSIOLOGICAL AND PHYSICAL ERRORS

Effects of Rhythm.—Music and the Insane.—Association of Ideas in Music.—Brain Action.—Memorization.—Beginnings of Musical Perception.—Quickness of Musical Perception.—Lack of Musical Perception.—Celebrities Who Have Been Unmusical.—Physical Changes Due to Musical Practice.—Effects of Practice.—Catarrh Among Wind-instrument Players.—Longevity of Composers... 123

CHAPTER X
ERRORS IN MUSICAL HISTORY

CHAPTER XI
LITERARY ERRORS ABOUT MUSIC

A Shakespearian Error.—Browning’s Errors.—Errors by Novelists.—Other Poetical Errors.—Coleridge.—Tennyson.—Composers Estimates of Other Composers.. 154

CHAPTER XII
CONCLUSION

List of Most Important Errors.—The Final Remedy.—What Reforms are Necessary.—The Need of an International Musical Congress... 163
CHAPTER I

MISTAKES IN ACOUSTICS

There is no science in existence in which so many matters have been left at loose ends as in music. A variety of causes has led to this. Many of the terms connected with music are Latin or Italian, and the teachers of Germany have sometimes misinterpreted them in their otherwise authoritative works. Again, some leaders in music have been ignorant of the laws of acoustics governing tone-production, and have given their sanction to false theories or definitions. Also some teachers, thorough in the routine of their work, have yet indulged in fanciful vagaries as to the correlation of sound to other physical forces, or as to the origin or application of some of the powers of music.

In this work it is not our purpose always to decide mooted questions. We may attempt that in many cases, but in some instances, where authorities are divided, it may be as well merely to
Mistakes in Acoustics

present the different views and allow the teacher or the student to form his own conclusions. It may be of value, however, to give to the teacher, in a compact form, the points in music on which authorities differ, as well as those points on which there are undoubted popular errors. No compendium of this sort has yet been attempted, yet its practical value in teaching must be at once apparent. We have grouped these errors, mistakes, and points of dispute under various heads.

ACOUSTICS

The doubts in this field begin with the word itself, which some pronounce "A-cow-sticks" and others "A-coo-sticks." Either manner of pronunciation is permitted by the large modern dictionaries.

SOUND

While it is understood that sound is a species of vibration, generally of the air, the catch-question is often propounded, "Would there be sound if no one heard it?" This merely mixes up the perception of sound with the physical force of sound.
Mistakes in Acoustics

For example, there was sound of the surges of a boiling ocean upon the earth long before there was any ear to hear it.

Effect of Atmosphere on Music

The speed of sound through the air is about a mile in five seconds. Slower in cold, dry air, and quicker in warm, damp air. People imagine that, because sound is clearer in cold, dry air, it therefore travels quicker, but, as can be scientifically demonstrated by practical experiment in large halls, the opposite is the case. (See article on “Pure Tone.”) The following facts about speed of sound ought to be better understood. All kinds of tone have the same velocity. If the heavy tone of a bass tuba were to travel quicker than the delicate tone of a violin, orchestral music would at once become impossible. But it must be remembered that deep tones travel further than high ones. This can be tested on leaving church on any Sunday. The pedal tones of the organ will be heard, as one goes further and further away from the instrument, when the higher tones have entirely vanished.
Mistakes in Acoustics

Animals and Music

One may read over and over again that a horse, a mouse, a spider, an elephant are attracted by music. This is an absurd half-truth. Music is not a natural science, as this and many other statements in non-scientific works would imply. Nature does not give us a scale or a single harmonic progression. The foundations of music that are derived from natural laws are regular vibration (tone), rhythm (we all pulsate rhythmically and respond readily to rhythmic effects), and separate chords (see "Pure Tone"). With these materials mankind has worked in many diverse directions, so that it is not incorrect to say that music is an artificial product made out of natural elements. The horse and spider, and other animals, would be less attracted by Beethoven’s "Sonata Appassionata" than by a strong two-step, since the latter would be more forcibly rhythmic; and in this they would be joined by many tribes of savages. Experiments have been made in this direction, amply proving the above statements and also showing that swine and donkeys are the least susceptible to rhythm among the mammals.
Mistakes in Acoustics

COLOR AND TONE

Here we approach one of the most widespread fancies in music. There are many most celebrated composers and teachers who firmly maintain that tone and color are closely connected. There are many who believe that every key produces the effect of a color. Mrs. H. H. A. Beach, the eminent composer, has from childhood associated keys and colors as follows:

Key of C—White.
F sharp minor—Black.
G sharp minor—Black.
E major—Yellow.
G major—Red.
A major—Green.
A-flat major—Blue.
D-flat major—Violet.
E-flat major—Pink.

Other composers give different color-schemes. The tones suggest colors to them, but not the same colors to different composers. It is undoubted that color and tone are both regular vibration, although of different kinds. The gap between color and tone in rate of vibration is so enormous that one
can scarcely imagine it even when the figures are presented.

The deepest tone that can be heard by the brain has sixteen vibrations a second—Sub-contra C, an octave below the deepest C of the piano. At 38,000 vibrations per second sound vanishes from the human brain. That would give a tone about three octaves above the highest E flat of the piano. Therefore an active and sensitive brain can perceive eleven octaves and a minor third of different pitches, from 16 to 38,000 vibrations per second.

The lowest vibrations of color that are visible to the eye are red rays, which vibrate about 460 trillions of vibrations per second. The highest are violet, vibrating about 730 trillions. The colors range from the lowest to the highest as follows: Red, orange, yellow, green, blue, indigo, violet—not an octave altogether.

If tones actually gave color-impressions, they would need to follow the above order, and all composers would need to agree in their color-scheme. As neither of these things take place we are forced to state our conviction that the correlation of tone and color is merely fanciful on the part of musicians.