Elements of Quaternions, Volume 2

Hamilton William Rowan
ELEMENTS OF QUATERNIONS.
ELEMENTS
OF
QUATERNIONS.

BY THE LATE
SIR WILLIAM ROWAN HAMILTON, LL.D.,
M.R.I.A.; D.C.L. Cantab.;
FELLOW OF THE AMERICAN SOCIETY OF ARTS AND SCIENCES;
OF THE SOCIETY OF ARTS FOR SCOTLAND; OF THE ROYAL ASTRONOMICAL SOCIETY OF LONDON;
AND OF THE ROYAL NORTHERN SOCIETY OF ANTIQUARIES AT COPENHAGEN;
CORRESPONDING MEMBER OF THE INSTITUTE OF FRANCE;
HONORARY OR CORRESPONDING MEMBER OF THE IMPERIAL OR ROYAL ACADEMIES OF ST. PETERSBURG,
BERLIN, AND TURIN; OF THE ROYAL SOCIETIES OF EDINBURGH AND DUBLIN;
OF THE NATIONAL ACADEMY OF THE UNITED STATES;
OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY; THE NEW YORK HISTORICAL SOCIETY;
THE SOCIETY OF NATURAL SCIENCES AT LAUSANNE; THE PHILOSOPHICAL SOCIETY OF VENICE;
AND OF OTHER SCIENTIFIC SOCIETIES IN BRITISH AND FOREIGN COUNTRIES;
ANDREWS' PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF DUBLIN;
AND ROYAL ASTRONOMER OF IRELAND.

SECOND EDITION.

EDITED BY
CHARLES JASPER JOLY, M.A.,
FELLOW OF TRINITY COLLEGE, DUBLIN;
ANDREWS' PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF DUBLIN,
AND ROYAL ASTRONOMER OF IRELAND.

VOLUME II.

LONGMANS, GREEN, AND CO.,
39, PATERNOSTER ROW, LONDON,
NEW YORK, AND BOMBAY.
1901.
ADVERTISEMENT TO THE SECOND EDITION.

I have reserved for the Appendix to this Volume the longer additional and illustrative notes which I have written for the new edition of the "Elements."

Some of those notes would have been inconveniently long as footnotes; others would have been inconveniently placed. For example, although the Note on Screws relates naturally to Art. 416 and that on the Kinematical Treatment of Curves to Art. 396, I have placed the Note on Screws before the Note on Curves because Hamilton's remarks on screw motion in the earlier Article required some development in order to make the Note on Curves easily intelligible. Accordingly the order of the notes has been arranged with reference to the notes themselves rather than with reference to the text. The selection and treatment of the subjects of these notes have been subordinated to the illustration of quaternion methods. I have not hesitated to sacrifice brevity for suggestiveness, and above all I have tried to render the notation as explicit as possible.

An analysis of the Appendix will be found on pages xlv-xlxi.

For greater convenience I have provided an Index to the whole work referring to the pages, the volumes being distinguished by the numbers i and ii.

I take this opportunity of testifying to the extraordinary accuracy both of matter and of printing in the first edition of the "Elements." Every portion of the work bears evidence of Hamilton's unsparing pains. I cannot recall a single sentence ambiguous in its meaning, or a single case in which a difficulty is not honestly faced. I see no sign of diminished vigour or of relaxed care in those portions of the work written in his failing health. My task as editor has convinced me of the extreme caution with which any endeavour should be made to improve or modify the calculus of Quaternions.

In conclusion, I desire to express my thanks to the College Printer, Mr. George Weldrick, for the great care he has taken in printing this edition for the Board of Trinity College, and for his unvarying courtesy to myself.

CHARLES JASPER JOLY.

The Observatory, Dunsink,
10th December, 1900.
TABLE OF CONTENTS.

BOOK III.

ON QUATERNIONS, CONSIDERED AS PRODUCTS OR POWERS OF VECTORS; AND ON SOME APPLICATIONS OF QUATERNIONS (continued), 1-358

CHAPTER III.

ON SOME ADDITIONAL APPLICATIONS OF QUATERNIONS, WITH SOME CONCLUDING REMARKS.

- **Section 1.** Remarks Introductory to this Concluding Chapter, 1-4
- **Section 2.** On Tangents and Normal Planes to Curves in Space, 4-10
- **Section 3.** On Normals and Tangent Planes to Surfaces, 11-23
- **Section 4.** On Osculating Planes, and Absolute Normals to Curves of Double Curvature, 24-29
- **Section 5.** On Geodetic Lines, and Families of Surfaces, 29-49

In these Sections, dp usually denotes a tangent to a curve, and v a normal to a surface. Some of the theorems or constructions may perhaps be new; for instance, those connected with the *cone of parallels* (pp. 6, 26, &c.) to the tangents to a curve of double curvature; and possibly the theorem (p. 42), respecting *reciprocal curves in space*: at least, the deductions here given of these results may serve as exemplifications of the Calculus employed. In treating of *Families of Surfaces* by quaternions, a sort of *analogue* (pp. 47, 48) to the formation and integration of *Partial Differential Equations* presents itself; as indeed it had done, on a similar occasion, in the *Lectures* (574).

- **Section 6.** On Osculating Circles and Spheres, to Curves in Space; with some connected Constructions, 50-179

The analysis, however condensed, of this long Section (III. iii. 6), cannot conveniently be performed otherwise than under the heads of the respective *Articles* (388-401) which compose it: each Article being followed by several sub-articles, which form with it a sort of *Series.*

* A *Table of initial Pages* of all the *Articles* will be elsewhere given, which will much facilitate reference.
TABLE OF CONTENTS.

ARTICLE 389.—Osculating Circle defined, as the limit of a circle, which touches a given curve (plane or of double curvature) at a given point p, and cuts the curve at a near point q (see fig. 77, p. 24). Deduction and interpretation of general expressions for the vector κ of the centre κ of the centre so defined. The reciprocal of the radius κp being called the vector of curvature, we have generally,

\[\text{Vector of Curvature} = (r - κ)^{-1} = \frac{dUdp}{\mathbf{T}dp} = \frac{1}{dp} \mathbf{V} \frac{dp}{dp} = \&c.; \]

(S)

and if the arc (p) of the curve be made the independent variable, then

\[\text{Vector of Curvature} = r^2 = D^2p = \frac{d^2p}{ds^2}. \]

(S')

Examples: curvatures of helix, ellipse, hyperbola, logarithmic spiral; locus of centres of curvature of helix, plane evolute of plane ellipse,

ARTICLE 390.—Abridged general calculations; return from (S') to (S),

ARTICLE 391.—Centre determined by three scalar equations; Polar Axis, Polar Developable,

ARTICLE 392.—Vector Equation of osculating circle,

ARTICLE 393.—Intersection (or intersections) of a circle with a plane curve to which it osculates; example, hyperbola,

ARTICLE 394.—Intersection (or intersections) of a spherical curve with a small circle osculating thereto; example, spherical conic; constructions for the spherical centre (or pole) of the circle osculating to such a curve, and for the point of intersection above mentioned,

ARTICLE 395.—Osculating Sphere, to a curve of double curvature, defined as the limit of a sphere, which contains the osculating circle to the curve at a given point p, and cuts the same curve at a near point q (comp. Art. 389). The centre s, of the sphere so found, is (as usual) the point in which the polar axis (Art. 391) touches the cusp-edge of the polar developable. Other general construction for the same centre (p. 77, comp. 106). General expressions for the vector, s = os, and for the radius, R = sp; R-1 is the spherical curvature (comp. Art. 397). Condition of Sphericity (S = 1), and Coefficient of Non-sphericity (S - 1), for a curve in space. When this last coefficient is positive (as it is for the helix), the curve lies outside the sphere, at least in the neighbourhood of the point of osculation,

ARTICLE 396.—Notations τ, τ',… for D, Ds, Ps, &c.; properties of a curve depending on the square (τ²) of its arc, measured from a given point p; τ = unit-tangent, τ' = vector of curvature, τ-1 = T' = curvature (or first curvature, comp. Art. 397), \(\nu = \tau \tau' = \text{bivector} \); the three planes, respectively perpendicular to τ, τ', ν, are the normal plane, the rectifying plane, and the osculating plane; general theory of enantomic lines and planes, vector of rotation, axis of displacement, osculating screw surface; condition of developability of surface of enantomics,

ARTICLE 397.—Properties depending on the cube (τ³) of the arc; Radius r (denoted here, for distinction, by a roman letter), and Vector r-1, of Second Curvature; this radius r may be either positive or negative (whereas the radius r of first curvature is always treated as positive), and its reciprocal r-1 may be thus expressed (pp. 92, 98),

\[\text{Second Curvature} = r^{-1} = S \frac{d^3p}{Vdpd^2p}, (T), \text{ or, } r^{-1} = S \frac{\tau'}{\tau'}, \]

(T')

the independent variable being the arc in (T), while it is arbitrary in (T); but quaternions

* In this Article, or Series, 397, and indeed also in 396 and 398, several references are given to a very interesting Memoir by M. de Saint-Venant, "Sur les lignes courbes non planes"; in which, however, that able writer objects to such known phrases as second curvature, torsion, &c., and proposes in their stead a new name "cauchur," which it has not been thought necessary here to adopt. (Journal de l'École Polytechnique, Cahier xxx.)