Reinforced Concrete And Masonry Structures

A Hool George
Title: Reinforced Concrete And Masonry Structures

Author: A Hool George

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.

Book Renaissance
www.ren-books.com
REINFORCED CONCRETE
AND MASONRY STRUCTURES
BOOKS BY HOOL AND OTHERS

Hool and Kinne—
STRUCTURAL ENGINEERS’ HANDBOOK
LIBRARY

FOUNDATIONS, ABUTMENTS AND FOOTINGS
STRUCTURAL MEMBERS AND CONNECTIONS
STRESSES IN FRAMED STRUCTURES
STEEL AND TIMBER STRUCTURES
REINFORCED CONCRETE AND MASONRY
STRUCTURES
MOovable AND LONG-SPAN STEEL BRIDGES

Hool and Johnson—
HANDBOOK OF BUILDING CONSTRUCTION, TWO VOLS.
CONCRETE ENGINEERS’ HANDBOOK

Hool and Whitney—
CONCRETE DESIGNERS’ MANUAL

Hool—
REINFORCED CONCRETE CONSTRUCTION, THREE VOLS.
(University of Wisconsin Extension Texts)
Vol. I—FUNDAMENTAL PRINCIPLES
Vol. II—RETAINING WALLS AND BUILDINGS
Vol. III—BRIDGES AND CULVERTS

Hool—
ELEMENTS OF STRUCTURES
(University of Wisconsin Extension Texts)

Hool and Pulver—
CONCRETE PRACTICE
REINFORCED CONCRETE
AND MASONRY STRUCTURES

COMPILED BY A STAFF OF SPECIALISTS

EDITORS-IN-CHIEF

GEORGE A. HOOL, S. B.
CONSULTING ENGINEER, PROFESSOR OF STRUCTURAL ENGINEERING
THE UNIVERSITY OF WISCONSIN

AND

W. S. KINNE, B. S.
PROFESSOR OF STRUCTURAL ENGINEERING
THE UNIVERSITY OF WISCONSIN

First Edition
Seventh Impression

McGRAW-HILL BOOK COMPANY, INC.
NEW YORK: 370 SEVENTH AVENUE
LONDON: 6 & 8 BOUVIER ST., E. C. 4
1924
Copyright, 1924, by the

Printed in the United States of America

PREFACE

This volume is one of a series designed to provide the engineer and the student with a reference work covering thoroughly the design and construction of the principal kinds and types of modern civil engineering structures. An effort has been made to give such a complete treatment of the elementary theory that the books may also be used for home study.

The titles of the six volumes comprising this series are as follows:

   Foundations, Abutments and Footings
   Structural Members and Connections
   Stresses in Framed Structures
   Steel and Timber Structures
   Reinforced Concrete and Masonry Structures
   Movable and Long-span Steel Bridges

Each volume is a unit in itself, as references are not made from one volume to another by section and article numbers. This arrangement allows the use of any one of the volumes as a text in schools and colleges without the use of any of the other volumes.

Data and details have been collected from many sources and credit is given in the body of the books for all material so obtained. A few chapters, however, throughout the six volumes have been taken without special mention, and with but few changes, from Hool and Johnson's Handbook of Building Construction.

The Editors-in-Chief wish to express their appreciation of the spirit of cooperation shown by the Associate Editors and the Publishers. This spirit of cooperation has made the task of the Editors-in-Chief one of pleasure and satisfaction.

G. A. H.
W. S. K.

Madison, Wis.
May, 1924.
EDITORIAL STAFF

EDITORS-IN-CHIEF

George A. Hool, Consulting Engineer, Professor of Structural Engineering, The University of Wisconsin, Madison, Wis.
W. S. Kinne, Professor of Structural Engineering, The University of Wisconsin, Madison, Wis.

ASSOCIATE EDITORS

Leslie H. Allen, Construction Engineer, Cicero, Ill.
C. M. Chuckrow, Fred T. Ley & Co., 19 West 44th St., New York City, N. Y.
Walter W. Clifford, of Clifford & Roeblad, Consulting Engineers, Boston, Mass.
James Cowin, Structural Engineer, Minneapolis, Minn.
W. P. Creager, Vice-President and Chief Engineer of the Northern New York Utilities, Inc. and the Power Corporation of New York, Trust Company Building, Watertown, N. Y.
W. J. Knight, Consulting Engineer, St. Louis, Mo.
Philip George Lang, Jr., Engineer of Bridges, Baltimore & Ohio Railroad, Baltimore, Md.
A. B. McDaniel, Member Civilian Advisory Board, General Staff, War Department, Washington, D. C.
C. B. McCullough, Bridge Engineer, Oregon State Highway Commission, Salem, Oregon.
H. E. Pulver, Associate Professor of Structural Engineering, University of Wisconsin, Madison, Wis.
Walter S. Todd, Structural Engineer, Sterling, Illinois. Formerly, Assistant Bridge Engineer, Illinois Division of Highways.
G. M. Williams, Professor of Civil Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
C. A. Willson, Engineer for State Architect, Madison, Wis.
# CONTENTS

Section 1. Preparation and Placing of Concrete

<table>
<thead>
<tr>
<th>PREPARATION OF CONCRETE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art. 1. The problem</td>
<td>1</td>
</tr>
<tr>
<td>2. Concrete materials</td>
<td>2</td>
</tr>
<tr>
<td>a. Cement</td>
<td>2</td>
</tr>
<tr>
<td>b. Aggregates</td>
<td>3</td>
</tr>
<tr>
<td>c. Admixtures</td>
<td>12</td>
</tr>
<tr>
<td>d. Waterproofings and hardeners</td>
<td>12</td>
</tr>
<tr>
<td>e. Mixing water</td>
<td>13</td>
</tr>
<tr>
<td>3. Consistency or flowability</td>
<td>14</td>
</tr>
<tr>
<td>a. Importance and effect on quality of concrete</td>
<td>14</td>
</tr>
<tr>
<td>b. Measurement of flowability or consistency</td>
<td>15</td>
</tr>
<tr>
<td>4. Methods and theories of proportioning concrete</td>
<td>17</td>
</tr>
<tr>
<td>a. Arbitrary volume proportions</td>
<td>17</td>
</tr>
<tr>
<td>b. Void method of proportioning concrete</td>
<td>17</td>
</tr>
<tr>
<td>c. Fuller's theory of maximum density for proportioning concrete</td>
<td>18</td>
</tr>
<tr>
<td>d. Surface area theory of proportioning concrete</td>
<td>18</td>
</tr>
<tr>
<td>e. Water-cement ratio theory of proportioning concrete</td>
<td>19</td>
</tr>
<tr>
<td>f. Pit run method of proportioning concrete</td>
<td>19</td>
</tr>
<tr>
<td>5. Method of proportioning concrete based upon preliminary tests of aggregates</td>
<td>20</td>
</tr>
<tr>
<td>a. Step No. 1.—Selection of the “desirable” fine coarse aggregate grading</td>
<td>21</td>
</tr>
<tr>
<td>b. Step No. 2.—Determination of cement content—strength relations for “desirable” gradation in concretes of different flowabilities</td>
<td>22</td>
</tr>
<tr>
<td>c. Step No. 3.—Verification and modification in practice under field conditions</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ART. 6. Practical application of preceding method of proportioning</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Quality of concrete as affected by processes in its preparation</td>
<td>22</td>
</tr>
<tr>
<td>a. Mixing</td>
<td>25</td>
</tr>
<tr>
<td>b. Placing and curing</td>
<td>26</td>
</tr>
<tr>
<td>8. Field inspection of concrete</td>
<td>27</td>
</tr>
<tr>
<td>a. Control at the mixer</td>
<td>27</td>
</tr>
<tr>
<td>b. Molding and storing of field test specimens</td>
<td>27</td>
</tr>
<tr>
<td>9. Some clauses for the concrete specification</td>
<td>29</td>
</tr>
<tr>
<td>10. Laboratory methods for use in selecting and determining the concrete making qualities of available aggregates</td>
<td>30</td>
</tr>
<tr>
<td>a. Tests of aggregates and selection of “desirable” gradation</td>
<td>30</td>
</tr>
<tr>
<td>b. Strength of the “desirable” gradation in concrete</td>
<td>31</td>
</tr>
<tr>
<td>c. Calculation of test data</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSPORTING AND PLACING CONCRETE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Methods of transporting concrete</td>
<td>33</td>
</tr>
<tr>
<td>a. Barrows</td>
<td>33</td>
</tr>
<tr>
<td>b. Carts</td>
<td>34</td>
</tr>
<tr>
<td>c. Cars</td>
<td>34</td>
</tr>
<tr>
<td>d. Spouting</td>
<td>35</td>
</tr>
<tr>
<td>e. Pneumatic and miscellaneous transportation</td>
<td>39</td>
</tr>
<tr>
<td>12. Depositing in forms</td>
<td>39</td>
</tr>
<tr>
<td>13. Continuous and even deposition in forms</td>
<td>40</td>
</tr>
<tr>
<td>14. Bonding set and new concrete</td>
<td>40</td>
</tr>
<tr>
<td>15. Spading, puddling and tamping</td>
<td>40</td>
</tr>
<tr>
<td>16. Depositing concrete through water</td>
<td>40</td>
</tr>
<tr>
<td>17. Remixed concrete</td>
<td>41</td>
</tr>
</tbody>
</table>
CONTENTS

Art. 18. Time of set and removal of forms............. 41
19. Concreting in cold weather................. 41
   a. Heating the aggregate and water................. 42
   b. Enclosure and heating forms............. 43
   c. Protection against frost............. 44
   d. Frozen concrete.................. 44
   e. Use of anti-freeze mixtures............. 44
20. Protection against heat............. 45

Concrete Construction in Alkali Soils and Sea Water

Section 2. Forms for Concrete

1. General conditions.................. 53
2. Material for forms.................. 53
3. Design of forms.................. 54
   a. Principles.................. 54
   b. Values to use.................. 54
   c. Preparation of drawings............. 55
4. Tables and diagrams for designing forms............. 59
   a. Notation.................. 59
   b. Allowable fiber stresses............. 59
   c. Formulas.................. 59
5. Make-up of forms.................. 70
   a. Plant design.................. 70
   b. Job office methods.................. 71
   c. Sawmill.................. 73
   d. Bench work.................. 73
6. Erection of forms.................. 74
7. Removal and re-use of forms............. 75
8. Forms for buildings.................. 75
   a. Walls.......................... 75
   b. Columns.................. 79
   c. Floors.................. 84
   d. Miscellaneous.................. 89
9. Forms for walls, bins and tanks............. 91
10. Retaining walls and dams............. 97
11. Forms for open channels, culverts and bridges............. 103
12. Forms for conduits and tunnels............. 109
13. Metal forms.................. 120

Section 3. Bending and Placing Concrete Reinforcement

1. Ordering.................. 127
2. Shipping.................. 128
3. Checking, assorting and storing............. 128
4. Testing.................. 129
5. Bending of reinforcement............. 129
6. Types of benders.................. 129
7. Spacers.................. 130
8. Supports and ties.................. 130
9. Assembling.................. 130
10. Placing.................. 131

Section 4. Finishing Concrete Surfaces and Waterproofing

Finishing Concrete Surfaces

1. Washing and brushing.................. 133
2. Acid washes.................. 135
3. Rubbing.................. 137
4. Tooling and bushing............. 138
5. Sand blasting.................. 139
6. Colored aggregates.................. 140
7. Addition of colors.................. 141
8. Plaster finishes.................. 141
9. Surfacing concrete floors............. 141
   a. Mechanical hardeners.................. 145
   b. Chemical hardeners.................. 145
   c. Accelerators.................. 145
   d. Linseed oil and soap.................. 146
   e. Colored floors.................. 146