Complex ions in aqueous solutions

Jaques Arthur
Title: Complex ions in aqueous solutions

Author: Jaques Arthur

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.
MONOGRAPHS ON BIOCHEMISTRY

Royal 8vo.

THE CHEMICAL CONSTITUTION OF THE PROTEINS. By R. H. A. Plimmer, D.Sc., Assistant Professor of Physiological Chemistry, University College, London. In Two Parts.
Part I. Analysis. Second Edition. 56. 6d. net.
Part II. Synthesis. Second Edition. 35. 6d. net.

THE GENERAL CHARACTERS OF THE PROTEINS. By S. B. Schryver, Ph.D., D.Sc., Lecturer on Physiological Chemistry, University College, London. 25. 6d. net.

THE VEGETABLE PROTEINS. By Thomas B. Osborne, Ph.D., Research Chemist in the Connecticut Agricultural Experiment Station, New Haven, Connecticut; Research Associate of the Carnegie Institution of Washington, D.C. 35. 6d. net.

THE FATS. By J. B. Leathes, F.R.S., M.A., M.B., F.R.C.S., Professor of Pathological Chemistry in the University of Toronto. 45. net.

ALCOHOLIC FERMENTATION. By Arthur Harden, Ph.D., D.Sc., F.R.S., Head of the Biochemical Department, Lister Institute, London. Second Edition, with Additions. 45. net.

THE PHYSIOLOGY OF PROTEIN METABOLISM. By E. P. Catticart, M.D., D.Sc., Grieve Lecturer on Chemical Physiology in the University of Glasgow. 45. 6d. net.

SOIL CONDITIONS AND PLANT GROWTH. By Edward J. Russell, D.Sc. (Lond.), Goldsmiths' Company's Soil Chemist, Rothamstead Experimental Station, Harpenden. With Diagrams. 55. net.

THE SIMPLER NATURAL BASES. By George Barger, M.A., D.Sc., Professor of Chemistry in the Royal Holloway College. 65. net.

NUCLEIC ACIDS. Their Chemical Properties and Physiological Conduct. By Walter Jones, Ph.D., Professor of Physiological Chemistry in the Johns Hopkins Medical School. 35. 6d. net.

THE POLYSACCHARIDES. By Arthur R. Ling, F.I.C.

COLLOIDS. By W. B. Hardy, M.A., F.R.S. [In preparation.

RESPIRATORY EXCHANGE IN ANIMALS. By A. Krough, Ph.D. [In preparation.

PROTAMINES AND HISTONES. By A. Kössel, Ph.D. [In preparation.

LECITHIN AND ALLIED SUBSTANCES. By H. Maclean, M.D., D.Sc. [In preparation.

LONGMANS, GREEN AND CO.
LONDON, NEW YORK, BOMBAY, CALCUTTA, AND MADRAS.
MONOGRAPHS ON INORGANIC AND PHYSICAL CHEMISTRY

Edited by ALEXANDER FINDLAY, M.A., Ph.D., D.Sc. Svo.

THE CHEMISTRY OF THE RADIO-ELEMENTS.
By FREDERICK SODDY, M.A., F.R.S.
Part I. 2s. 6d. net.
Part II. The Radio-Elements and the Periodic Law. 2s. net.
Two Parts in one volume, 4s. net.

PER-ACIDS AND THEIR SALTS.
By T. SLATER PRICE, D.Sc., Ph.D., F.I.C. 3s. net.

OSMOTIC PRESSURE.
By ALEXANDER FINDLAY, M.A., Ph.D., D.Sc. 2s. 6d. net.

THE VISCOSITY OF LIQUIDS.
By ALBERT ERNEST DUNSTAN, D.Sc. (Lond.), Head of the Chemical Department, East Ham Technical College, and FERDINAND BERNARD THOLE, B.Sc. (Lond.), Lecturer on Organic Chemistry, East Ham Technical College. 3s. net.

INTERMETALLIC COMPOUNDS.
By CECIL H. DESCH, D.Sc., Graham Young Lecturer in Metallurgical Chemistry in the University of Glasgow. With 17 Figures. 3s. net.

ELECTROLYTIC DISSOCIATION THEORY. By J. C. PHILIP, D.Sc. [In preparation.

THE PHYSICAL CHEMISTRY OF FLAMES. By J. E. COATES, M.Sc. [In preparation.

CLAYS. By J. W. MELLOR, D.Sc. [In preparation.

MOLECULAR ASSOCIATION. By W. E. S. TURNER, D.Sc. [In preparation.

CATALYSIS OF GAS REACTIONS. By D. L. CHAPMAN, M.A. [In preparation.

THE ELECTRO-CHEMISTRY OF NON-AQUEOUS SOLUTIONS. By JAMES W. MCBAIN. [In preparation.

CATALYSIS IN LIQUID SYSTEMS. By GEORGE SENTER, D.Sc. [In preparation.

THE RARE EARTH METALS. By J. F. SPENCER, D.Sc., of the Bedford College for Women. [In preparation.

MONOGRAPHS ON PHYSICS

RAYS OF POSITIVE ELECTRICITY AND THEIR APPLICATION TO CHEMICAL ANALYSIS. By Sir J. J. THOMSON, O.M., F.R.S. With Plates and Diagrams. 5s. net.

MODERN SEISMOLOGY. By G. W. WALKER, A.R.C.Sc., M.A., F.R.S., formerly Fellow of Trinity College, Cambridge. With Plates and Diagrams. 5s. net.

PHOTO-ELECTRICITY, THE LIBERATION OF ELECTRONS BY LIGHT; with Chapters on Fluorescence and Phosphorescence, and Photo-Chemical Actions and Photography. By H. STANLEY ALLEN, M.A., D.Sc., Senior Lecturer in Physics at University of London, King’s College, 7s. 6d. net.

ELECTRIC WAVES. By Professor G. W. PIERCE, Harvard University, Cambridge, Mass. [In preparation.

THE SPECTROSCOPY OF THE EXTREME ULTRA-VIOLET. By THEODORE LYMAN, Ph.D., Assistant Professor of Physics in Harvard University.

EMISSION OF ELECTRICITY FROM HOT BODIES. By Professor O. W. RICHARDSON, F.R.S., Wheatstone Professor of Physics, King’s College, London. [In preparation.

COLLOIDAL SOLUTIONS. By Professor E. F. BURTON, The Physics Department, King’s College, London. [In preparation.

ATMOSPHERIC IONIZATION. By Professor J. C. McLennan, Department of Physics, The University, Toronto. [In preparation.

ELECTRIC WAVES. By Professor G. W. PIERCE, Harvard University, Cambridge, Mass. [In preparation.

LONDON, NEW YORK, FOMBAY, CALCUTTA, AND MADRAS.
COMPLEX IONS
IN AQUEOUS SOLUTIONS
COMPLEX IONS
IN AQUEOUS SOLUTIONS

BY

ARTHUR JAQUES, D.Sc., F.I.C.

LONGMANS, GREEN AND CO.
39 PATERNOSTER ROW, LONDON
FOURTH AVENUE & 30TH STREET, NEW YORK
BOMBAY, CALCUTTA, AND MADRAS
1914
PREFACE

In compiling this volume the needs—and criticism—of a large class of students versed in physical chemistry have been especially kept in view, and it is considered that the introduction of some elementary matter, such as proofs of formule, which the advanced reader will not require, is by no means out of place.

In giving an account of the methods in Chapters III.—VI., it was found necessary to introduce examples, but these were made as brief as possible in order to avoid confusing these chapters with the later ones which deal with practical investigations, where more than one method is generally used at a time. The tension experiments in Chapter VIII. form a method of investigation in which the examination of different salts shows so little variation that it appeared unnecessary to devote a separate chapter to the method.

The chief aim of the book is to give some account of the more important experimental work in this subject, and no apology is offered for the absence of theories of valency.

Chapter X. contains an account of some results besides the identification of complex compounds, which have been arrived at by similar methods, and which are likely to form the basis of further experiments.

A. J.

Polmont,
Stirlingshire,
May, 1914.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THE CHEMICAL METHOD</td>
<td>6</td>
</tr>
<tr>
<td>III. THE IONIC MIGRATION METHOD</td>
<td>11</td>
</tr>
<tr>
<td>IV. THE DISTRIBUTION METHOD</td>
<td>20</td>
</tr>
<tr>
<td>V. THE SOLUBILITY METHOD</td>
<td>28</td>
</tr>
<tr>
<td>VI. THE ELECTRICAL POTENTIAL METHOD</td>
<td>39</td>
</tr>
<tr>
<td>VII. SOME EXAMPLES</td>
<td>49</td>
</tr>
<tr>
<td>VIII. AMMONIACAL SALT SOLUTIONS, ETC.</td>
<td>73</td>
</tr>
<tr>
<td>IX. SOME COBALT AND COPPER SOLUTIONS</td>
<td>97</td>
</tr>
<tr>
<td>X. SOME SPECIAL CASES OF EQUILIBRIUM</td>
<td>104</td>
</tr>
<tr>
<td>APPENDIX I. THE HYDRATE THEORY</td>
<td>139</td>
</tr>
<tr>
<td>II. A THEORETICAL METHOD OF EXAMINING CERTAIN SOLUTIONS</td>
<td>145</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME INDEX</td>
<td>147</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
<td>150</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

A. Introductory.

The suggestion that the abnormal behaviour of certain electrolytes might be accounted for by assuming the formation of complex ions in them was first put forward by Hittorf, who, in the course of his study of migration, made the classical discovery that the migration ratio for the anion in solutions of many double salts and certain single ones increased rapidly with increase in the concentration of the solution and at high concentrations became greater than unity. Hittorf suggested that this was due to the formation of a "double salt" in the solution, which gradually dissociated on dilution. In this way our knowledge of the mode of ionisation of a number of salts in solution was established.

Later, the subject was investigated by other methods, notably by pure chemical means and by cryoscopic measurements. The latter method, however, yields somewhat uncertain results.

A new method was introduced by Roloff (Zeit. phys. Chem., 13, 341 (1894)), who measured the distribution ratio of a solute between two solvents, and showed that the increase in the solubility of bromine in water observed on adding potassium bromide to the system is due to the formation of the complex ion Br₃⁻. Two years later Jakowkin (Zeit. phys. Chem., 20, 19 (1896)), employing the same method, found that solutions of iodine and potassium iodide show similar behaviour.

In the last fifteen years two new methods of investigating
the constitution of electrolytes have been worked out, the first based upon solubility measurements and the second upon measurements of electrode potential, and a large number of complex ions have been discovered and studied by these methods. Much of this work was carried out by the late Professors Abegg and Bodländer and their pupils.

Such investigations are likely to be of value in framing a theory of chemical combination in the future. For in complex ions we have a class of compounds in which valencies other than the normal valencies of the elements entering into them are exercised, and whose dissociation constants can in some cases be measured, so that we can gain some information about the action of these weaker valencies.

An ingenious theory of valency which is specially applicable to the formation of so-called molecular compounds (including complex ions) has been constructed by Abegg and Bodländer (Abegg and Bodländer, *Zeit. anorg. Chem.*, 20, 471 (1899); Abegg, *Zeit. anorg. Chem.*, 39, 333 (1904)). According to this theory, the tendency which an element exhibits to form complex compounds depends largely upon its electroaffinity, i.e. the free energy with which it takes up an electric charge and becomes converted into an ion. It is assumed that the electrolytic potential is an approximate measure of this quantity, though, as Abegg and Bodländer point out, this would only be true if the concentration of free atoms in saturated solution were the same for all elements. Actually, nothing at all is known of the relative solubilities of the metals in water, and in the case of oxygen and the halogens it is very unlikely that at a given pressure the concentrations of the free atoms in aqueous solutions are equal. It is, however, true that, generally speaking, the less the electrolytic potential (either positive or negative) of an element, the greater is its tendency to enter into complex compounds. The electrolytic potential also shows a certain relationship to the atomic volume, the two quantities being roughly parallel in any given group in the periodic system. In the horizontal rows, the electroaffinity shows a continuous