Treatise on natural philosophy
Kelvin William Thomson
Title: Treatise on natural philosophy

Author: Kelvin William Thomson

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.
TREATISE
ON
NATURAL PHILOSOPHY

BY
LORD KELVIN, LL.D., D.C.L., F.R.S.

AND
PETER GUTHRIE TAIT, M.A.

PART II.

CAMBRIDGE:
AT THE UNIVERSITY PRESS.
1912

Reprinted 1890, 1895, 1903, 1912.
PREFACE.

The original design of the Authors incommencing this work about twenty years ago has not been carried out beyond the production of the first of a series of volumes, in which it was intended that the various branches of mathematical and experimental physics should be successively treated. The intention of proceeding with the other volumes is now definitely abandoned; but much new matter has been added to the first volume, and it has been divided into two parts, in the second edition now completed in this second part. The original first volume contained many references to the intended future volumes; and these references have been allowed to remain in the present completion of the new edition of the first volume, because the plan of treatment followed depended on the expectation of carrying out the original design.

Throughout the latter part of the book extensive use has, according to Prof. Stokes' revival of this valuable notation, been made of the "solidus" to replace the horizontal stroke in fractions; for example $\frac{a}{b}$ is printed a/b. This notation is (as is illustrated by the spacing between these lines) advantageous for the introduction of isolated analytical expressions in the midst of the text, and its use in printing complex fractional and exponential expressions permits the printer to dispense with much of the troublesome process known as "justification," and effects a considerable saving in space and expense.
An index to the whole of the first volume has been prepared by Mr Burnside, and is placed at the end.

A schedule is also given below of all the amendments and additions (excepting purely verbal changes and corrections) made in the present edition of the first volume.

Inspection of the schedules on pages xxii. to xxv. will shew that much new matter has been imported into the present edition, both in Part I. and Part II. These additions are indicated by the word “new.”

The most important part of the labour of editing Part II. has been borne by Mr G. H. Darwin, and it will be seen from the schedule below that he has made valuable contributions to the work.

NOTE TO NEW IMPRESSION, 1912

A few slight additions and corrections have been made by Sir George Darwin and Prof. H. Lamb, but, substantially, the work remains as last passed by the authors. The additions can be identified by the initials attached in brackets.

1912
CONTENTS.

DIVISION II.—ABSTRACT DYNAMICS.

CHAPTER V.—INTRODUCTORY.

Approximate treatment of physical questions—Further approximations 438—447
Object of the present division of the work 448, 449
Laws of friction 450—452
Rejection of merely curious speculations 453

CHAPTER VI.—STATICS OF A PARTICLE.—ATTRACTION.

Objects of the chapter 454

Conditions of equilibrium of a particle—Equilibrium of a particle—Angle of repose 455, 456
Attraction—Universal law of attraction—Special unit of quantity of matter—Linear, surface, and volume, densities—Electric and magnetic reckonings of quantity—Positive and negative masses admitted in abstract theory of attraction—Uniform spherical shell—Attraction on internal point 457—462

Digression on the division of surfaces into elements—Explanations and definitions regarding cones—The solid angle of a cone, or of a complete conical surface—Sum of all the solid angles round a point = \(4\pi\)—Sum of the solid angles of all the complete conical surfaces = \(2\pi\)—Solid angle subtended at a point by a terminated surface—Orthogonal and oblique sections of a small cone—Area of segment cut from spherical surface by small cone 463—470

Uniform spherical shell—Attraction on external point—Attraction on an element of the surface 471, 472

Attraction of a spherical surface of which the density varies inversely as the cube of the distance from a given point—Uninsulated sphere under the influence of an electric point—Direct analytical calculation of attractions—Uniform spherical shell—Uniform circular disc, on particle in its axis—Cylinder on particle in axis—Right cone on particle at vertex—Positive and negative discs—Variation
of force in crossing an attracting surface—Uniform hemisphere attracting particle at edge—Alteration of latitude; by hemispherical hill or cavity, by crevasse—Attraction of a sphere composed of concentric shells of uniform density—Attraction of a uniform circular arc, of a uniform straight line .. 473-481

Potential—Force in terms of the potential—Equipotential surface—Relative intensities of force at different points of an equipotential surface—Line of force—Variation of intensity along a line of force—Potential due to an attracting point—Analytical investigation of the value of the potential—Force at any point—Force within a homogeneous sphere—Rate of increase of the force in any direction—Laplace's equation—Poisson's extension of Laplace's equation—Potential of matter arranged in concentric spherical shells of uniform density—Coaxial right cylinders of uniform density and infinite length—Matter arranged in infinite parallel planes of uniform density—Equipotential surface .. 482-491

Integral of normal attraction over a closed surface—Equivalent to Poisson's extension of Laplace's equation—Equivalent to Laplace's equation—Inverse problem—Attractions of solid homogeneous ellipsoid and circumscribed focaloid of equal mass found equal—Homoeoids and Focaloids defined—Proof of Maclaurin's Theorem—Maclaurin's Theorem—Equivalent in shells of Maclaurin's Theorem 492-494

Digression on the attraction of an ellipsoid—To find the potential of an ellipsoid at any interior point—Attraction of an infinitely long elliptic cylinder—Internal isodynamic surfaces are similar to the bounding surface 494

Potential in free space cannot have a maximum or minimum value; is a minimax at a point of zero force in free space—Earnshaw's theorem of unstable equilibrium—Mean potential over a spherical surface equal to that at its centre—Theorem of Gauss, proved 495a-498

Green's problem, reduced to the proper general solution, of Laplace's equation; solved synthetically in terms of particular solution of Laplace's equation—Isolation of effect by closed portion of surface—Green's problem; applied to a given distribution of electricity, \(M \), influencing a conducting surface, \(S \)—Virtually Maclaurin's theorem—Elliptic homoeoid, an example belonging to the reducible case of Green's problem—Complex application of § 501—General problem of electric influence possible and determinate—Simultaneous electric influences in spaces separated by infinitely thin conducting surfaces—Reducible case of Green's problem; applied to the invention of solved prob-
CONTENTS.

lems of electric influence—Examples—Electric images—
Transformation by reciprocal radius-vectors—General sum-
mary of ratios—Application to the potential—Any distribu-
tion on a spherical shell—Uniform shell excentrically
reflected. 499—518

Second investigation of attraction of ellipsoid—Elliptic
homoeoid exerts zero force on internal point: theorem
due to Newton—Distribution of electricity on ellipsoidal
conductor—Force external to an elliptic homoeoid found
—Digression, second proof of Maclaurin’s theorem—
Magnitude and direction of attraction of elliptic homoeoid
on external point, expressed analytically—Potential of
an elliptic homoeoid at any point external or internal
found—Synthesis of concentric homoeoids—Potential of
heterogeneous ellipsoid—Potential of homogeneous ellip-
soid—Attraction of heterogeneous ellipsoid—Potential and
attraction of homogeneous ellipsoid of revolution: oblate:
prolate 519—527

Third investigation of the attraction of an ellipsoid—Corre-
sponding points on confocal ellipsoids defined—Digres-
sion; orthogonal trajectory of confocal ellipsoids is traced
by any point of a confocally distorted solid ellipsoid:
proof—Ivory’s Lemma on corresponding points—Ivory’s
theorem proved—Chasles’ comparison between the poten-
tials of two confocal homoeoids—Proof of Poisson’s
theorem regarding attraction of elliptic homoeoid—Law of
attraction when a uniform spherical shell exerts no action
on an internal point—Cavendish’s Theorem 528—553

Centre of gravity—Centrobaric bodies, proved possible by
Green—Properties of centrobaric bodies—Centrobaric
shell—Centrobaric solid—The centre of gravity (if it
exist) is the centre of inertia—A centrobaric body is
kinetically symmetrical about its centre of gravity 534, 535

Origin of spherical harmonic analysis of Legendre and La-
place—Application of spherical harmonic analysis—Poten-
tial of a distant body—Attraction of a particle on a
distant body—Principle of the approximation used in the
common theory of the centre of gravity—Potential of solid
sphere with harmonic distribution of density—Potential
of any mass in harmonic series—Application to figure of
the earth—Case of the potential symmetrical about an
axis—Examples. (I) Potential of circular ring; Poten-
tial symmetrical about an axis—(II) of circular disc—
Potential in the neighbourhood of a circular galvanometer
coil 536—546

Exhaustion of potential energy—Green’s method—Exhaustion
of potential energy, in allowing condensation of diffused matter—Gauss's method—Equilibrium of repelling particles enclosed in a rigid smooth surface

547—550

CHAPTER VII.—STATICS OF SOLIDS AND FLUIDS.

Rigid body—Equilibrium of freed rigid body—Important proposition; proved—Equilibrium of constrained rigid body—Example. Two constraints;—the four equations of equilibrium found; and the two factors determining the amounts of the constraining forces called into action—Equations of equilibrium without expression of constraining reactions—Equilibrium of forces applied to a nut on a frictionless fixed screw—Work done by a single force on a nut, turning on a fixed screw—Equation of equilibrium of forces applied to a nut on a frictionless screw—The same analytically and in terms of rectangular co-ordinates—Two generalized component velocities corresponding to two freedoms—Equilibrant and resultant

551—558

Couples—Composition of couples—Force resolved into force and couple—Application to equilibrium of rigid body—Forces represented by the sides of a polygon—Forces proportional and perpendicular to the sides of a triangle—Composition of force and couple—Composition of any set of forces acting on a rigid body—Central axis

559—559g

Reduction to two forces—Symmetrical case—Composition of parallel forces—Centre of gravity—Parallel forces whose algebraic sum is zero—Conditions of equilibrium of three forces—Physical axiom—Equilibrium under the action of gravity—Rocking stones—Equilibrium about an axis, on a fixed surface—Pappus' theorem

560—570

Mechanical powers, Examples—Balance, sensibility—Rod with frictionless constraint—Rod constrained by frictional surfaces—Block on frictional plane—Mass supported by rings passing round a rough post

571—572

573—587

Elastic wire, fibre, bar, rod, lamina, or beam—Composition and resolution of curvatures in a curved line—Laws of flexure and torsion—Warping of normal section by torsion