Notes and formulae for mining students

Merivale John Herman
Title: Notes and formulae for mining students

Author: Merivale John Herman

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.

Book Renaissance
www.ren-books.com
NOTES AND FORMULÆ
FOR
MINING STUDENTS.
NOTES AND FORMULÆ

FOR

MINING STUDENTS.

BY

JOHN HERMAN MERIVALE, M.A.

CERTIFICATED COLLIER MANAGER; MEMBER OF COUNCIL OF THE N. OF ENGLAND
INST. OF MINING AND MECHANICAL ENGINEERS; AND PROFESSOR OF MINING
IN THE DURHAM COLLEGE OF SCIENCE, NEWCASTLE-UPON-TYNE.


LONDON:
CROSBY LOCKWOOD AND SON,
7, STATIONERS' HALL COURT, LUDGATE HILL.
1888.

[All rights reserved.]
PREFACE.

The following pages do not profess to contain much original matter. They are a collection of notes and formulæ, drawn from various sources, my authority being quoted in most instances, and were originally compiled for the students in the Durham College of Science, because I could find no suitable textbook at a moderate cost. They are now re-issued, revised, and enlarged, in a form which I trust may be useful not only to students but to my professional brethren.

The principal sources of information upon mining matters are the Transactions of the various engineering societies to which the student, in most of our large towns, has access. I have given a great many references to the most familiar of them, so that the student, who wishes to follow up a subject, may be in a position to acquaint himself with details which want of space does not permit me to include in a work like this.

The examples of the use of the formulæ, which I have added at the end of the book, are merely given to assist students working without a teacher, and are
PREFACE.

not intended to furnish practical designs for mining appliances.

I should like to take this opportunity of thanking my colleagues for the valuable assistance they have given me in the revision of my Notes.

J. H. M.

NOTE TO THE SECOND EDITION.

I have taken the opportunity of the demand for a New Edition to correct a few verbal inaccuracies, and to substitute for the paragraphs relating to the Mines Act of 1872 others relating to the present Act.

J. H. M.
CONTENTS.

COURSE OF STUDY FOR MINING STUDENTS.
Mathematics.—Experimental physics.—Chemistry.—Geology.—
Mechanical drawing.—Modern languages.—Certificated Managers’ Examination. . . . . . . . . . . . . . 1

COAL FIELDS OF GREAT BRITAIN AND IRELAND.
Formation of coal.—Table of sedimentary rocks.—Mining statistics 6

NEWCASTLE COAL FIELD.
Section of the strata.—List of seams.—Dykes.—Troubles.—
Mineral products.—Drawings and persons employed.—Coal fields of the world.—Composition of coal.—Produce of coal seams.—Weight of ores.—The Coal Commission . . . . 10

THE STRENGTH OF MATERIALS.
Ropes.—Chains.—Cast-iron pipes.—Boilers.—Masonry pillars.—
Beams.—Girders.—Columns.—Dams.—Tubbing . . . . 16

TIMBER.
Timber measure.—Cost of timbering . . . . . . . . . 26

EXPLOSIVES.
The Mines Act and general rules.—The Explosives Act.—Com position of explosives.—Substitutes for explosives . . . . 28


<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACHINERY.</td>
</tr>
<tr>
<td>Nature and uses.—Force, work, power, and energy.—Table of specific heats</td>
</tr>
<tr>
<td>PRIME MOVERS.</td>
</tr>
<tr>
<td>Men and horses.—Cost of feeding horses.—Work of men and horses.—Hydraulic motors.—Windmills.—The steam-engine. —Horse-power</td>
</tr>
<tr>
<td>BOILERS.</td>
</tr>
<tr>
<td>Strength.—Boiler fittings. —Explosions.—Incrustations.—Doctors, —Corrosions.—Horse-power of boilers.—Properties of steam.—Condensation.—Chimneys</td>
</tr>
<tr>
<td>TRANSMISSION OF POWER.</td>
</tr>
<tr>
<td>Compressed air.—Wire ropes.—Steam.—Loss by radiation and loss by contact with air in horizontal pipes and in vertical pipes.—Loss by friction.—Steam transmission.—Practical details.—Summary</td>
</tr>
<tr>
<td>MAGNETISM AND ELECTRICITY.</td>
</tr>
<tr>
<td>Practical electro-magnetic units.—Compass surveying.—Firing shots.—Signalling.—Lighting.—Transmission of power.— Firedamp detectors.—Danger</td>
</tr>
<tr>
<td>SEARCH FOR MINERALS.</td>
</tr>
<tr>
<td>Costeaming.—Boring.—Hand-boring.—The diamond process.— Cost of boring.—Deep bore-holes</td>
</tr>
<tr>
<td>SINKING.</td>
</tr>
<tr>
<td>Mines Act.—Workmen in the pit, Ordinary method and Poetsch method.—Workmen at bank, Kind-Chaudron method and Chavette method.—Shaft fittings.—Shaft pillars.—Deep mines.—Underground temperature.—Important Adits</td>
</tr>
</tbody>
</table>
CONTENTS.

SYSTEM OF WORKING.
Above-ground.—Under-ground.—Long wall and bord and pillar. —Stoping.—Cost of working 79

WINDING.
Winding engines.—Counterbalances.—Pulley frames.—Pulleys.—Ropes.—Chains and cages.—Sundries 85

DRAINING.
Pumps.—The shaft.—The workings.—Sundries.—Boring against old workings.—Dams.—Tubbing 89

HAULING.
Resistances to be overcome, Friction, Inclination, Curves.—Motors, men, horses.—Self-acting inclines.—Cost 95

GENERAL PROPERTIES OF AIR AND GASES.
Pressure.—Temperature.—Occluded Gases.—Transpiration.—Diffusion.—Fire-damp analyses 101

CHEMISTRY.
Compounds and elements.—Atoms.—Chemical symbols.—Molecules and formulae.—Chemical equations 106

THE GASES.
Oxygen.—Carbonic oxide.—Hydrogen.—Hydrogen-sulphide.—Nitrogen.—Carbonic acid.—Fire-damp.—Ambulance.—Asphyxia.—Illuminating gas.—Air 109

VENTILATION.
The three laws of friction.—Causes of difference of pressure.—Depressive ventilation.—The furnace.—Consumption of fuel in furnaces.—The steam jet.—Centrifugal fans.—Compressive ventilation.—Relation between volume, pressure, &c.—Table of hyperbolic logarithms, and table of the specific gravities of solids 122
CONTENTS.

EXAMPLES OF THE USE OF FORMULÆ.

Ropes.—Strength of boilers.—Size of dams.—Resistance to traction.—Self-acting incline.—Position of meetings.—Pumping engine.—Boilers required for engine and consumption of coal.—Dimensions of chimney.—Units of work to compress air.—To find dip and angle of bed by three boreholes.—Ventilating pressure required to circulate air.—Ventilating pressure produced by furnace.—Power of hauling engine.—Effect of cupola.—Size of pipe required to transmit steam. . 138

INDEX . . . . . . . . . . . . . . . . 153

ABBREVIATIONS USED THROUGHOUT THE BOOK.


Proc. I.C.E. = Proceedings of the Inst. of Civil Engineers.

RANKINE M.M. = RANKINE’s Machinery and Mill Work.

RANKINE S.E. = RANKINE’s Steam Engine.

E.M.F. = Electro-motive force.

HP = Horse-power.