A treatise on electricity and magnetism

Maxwell James Clerk
Title: A treatise on electricity and magnetism

Author: Maxwell James Clerk

This is an exact replica of a book. The book reprint was manually improved by a team of professionals, as opposed to automatic/OCR processes used by some companies. However, the book may still have imperfections such as missing pages, poor pictures, errant marks, etc. that were a part of the original text. We appreciate your understanding of the imperfections which can not be improved, and hope you will enjoy reading this book.
A TREATISE

ON

ELECTRICITY AND MAGNETISM

MAXWELL
London

HENRY FROWDE

OXFORD UNIVERSITY PRESS WAREHOUSE

7 PATERNOSTER ROW
A TREATISE
ON
ELECTRICITY AND MAGNETISM

BY

JAMES CLERK MAXWELL, M.A.
LL.D. EDIN., D.C.L., F.R.S. LONDON AND EDINBURGH
HONORARY FELLOW OF TRINITY COLLEGE,
AND PROFESSOR OF EXPERIMENTAL PHYSICS IN THE UNIVERSITY OF CAMBRIDGE

VOL. II
SECOND EDITION

OXFORD
AT THE CLARENDON PRESS
1881
[All rights reserved]
CONTENTS.

PART III.

MAGNETISM.

CHAPTER I.

ELEMENTARY THEORY OF MAGNETISM.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>371. Properties of a magnet when acted on by the earth</td>
<td>1</td>
</tr>
<tr>
<td>372. Definition of the axis of the magnet and of the direction of magnetic force</td>
<td>1</td>
</tr>
<tr>
<td>373. Action of magnets on one another. Law of magnetic force</td>
<td>2</td>
</tr>
<tr>
<td>374. Definition of magnetic units and their dimensions</td>
<td>3</td>
</tr>
<tr>
<td>375. Nature of the evidence for the law of magnetic force</td>
<td>4</td>
</tr>
<tr>
<td>376. Magnetism as a mathematical quantity</td>
<td>4</td>
</tr>
<tr>
<td>377. The quantities of the opposite kinds of magnetism in a magnet are always exactly equal</td>
<td>4</td>
</tr>
<tr>
<td>378. Effects of breaking a magnet</td>
<td>5</td>
</tr>
<tr>
<td>379. A magnet is built up of particles each of which is a magnet</td>
<td>5</td>
</tr>
<tr>
<td>380. Theory of magnetic ‘matter’</td>
<td>5</td>
</tr>
<tr>
<td>381. Magnetization is of the nature of a vector</td>
<td>7</td>
</tr>
<tr>
<td>382. Meaning of the term ‘Magnetic Polarization’</td>
<td>8</td>
</tr>
<tr>
<td>383. Properties of a magnetic particle</td>
<td>8</td>
</tr>
<tr>
<td>384. Definitions of Magnetic Moment, Intensity of Magnetization, and Components of Magnetization</td>
<td>8</td>
</tr>
<tr>
<td>385. Potential of a magnetized element of volume</td>
<td>9</td>
</tr>
<tr>
<td>386. Potential of a magnet of finite size. Two expressions for this potential, corresponding respectively to the theory of polarization, and to that of magnetic ‘matter’</td>
<td>10</td>
</tr>
<tr>
<td>387. Investigation of the action of one magnetic particle on another</td>
<td>10</td>
</tr>
<tr>
<td>388. Particular cases</td>
<td>12</td>
</tr>
<tr>
<td>389. Potential energy of a magnet in any field of force</td>
<td>14</td>
</tr>
<tr>
<td>390. On the magnetic moment and axis of a magnet</td>
<td>15</td>
</tr>
</tbody>
</table>
CONTENTS.

Art.
391. Expansion of the potential of a magnet in spherical harmonics 16
392. The centre of a magnet and the primary and secondary axes through the centre 17
393. The north end of a magnet in this treatise is that which points north, and the south end that which points south. Boreal magnetism is that which is supposed to exist near the north pole of the earth and the south end of a magnet. Austral magnetism is that which belongs to the south pole of the earth and the north end of a magnet. Austral magnetism is considered positive 19
394. The direction of magnetic force is that in which austral magnetism tends to move, that is, from south to north, and this is the positive direction of magnetic lines of force. A magnet is said to be magnetized from its south end towards its north end 19

CHAPTER II.
MAGNETIC FORCE AND MAGNETIC INDUCTION.

395. Magnetic force defined with reference to the magnetic potential 21
396. Magnetic force in a cylindric cavity in a magnet uniformly magnetized parallel to the axis of the cylinder 22
397. Application to any magnet 22
398. An elongated cylinder.—Magnetic force 23
399. A thin disk.—Magnetic induction 23
400. Relation between magnetic force, magnetic induction, and magnetization 24
401. Line-integral of magnetic force, or magnetic potential 24
402. Surface-integral of magnetic induction 25
403. Solenoidal distribution of magnetic induction 26
404. Surfaces and tubes of magnetic induction 27
405. Vector-potential of magnetic induction 27
406. Relations between the scalar and the vector-potential 29

CHAPTER III.
MAGNETIC SOLENOIDS AND SHELLS.

407. Definition of a magnetic solenoid 31
408. Definition of a complex solenoid and expression for its potential at any point 32
CONTENTS.

409. The potential of a magnetic shell at any point is the product of its strength multiplied by the solid angle its boundary subtends at the point 32
410. Another method of proof 33
411. The potential at a point on the positive side of a shell of strength Φ exceeds that on the nearest point on the negative side by $4\pi\Phi$ 34
412. Lamellar distribution of magnetism 34
413. Complex lamellar distribution 34
414. Potential of a solenoidal magnet 35
415. Potential of a lamellar magnet 35
416. Vector-potential of a lamellar magnet 36
417. On the solid angle subtended at a given point by a closed curve 36
418. The solid angle expressed by the length of a curve on the sphere 37
419. Solid angle found by two line-integrations 38
420. Π expressed as a determinant 39
421. The solid angle is a cyclic function 40
422. Theory of the vector-potential of a closed curve 41
423. Potential energy of a magnetic shell placed in a magnetic field 42

CHAPTER IV.

INDUCED MAGNETIZATION.

424. When a body under the action of magnetic force becomes itself magnetized the phenomenon is called magnetic induction 44
425. Magnetic induction in different substances 45
426. Definition of the coefficient of induced magnetization 47
427. Mathematical theory of magnetic induction. Poisson's method 47
428. Faraday's method 49
429. Case of a body surrounded by a magnetic medium 51
430. Poisson's physical theory of the cause of induced magnetism 53

CHAPTER V.

PARTICULAR PROBLEMS IN MAGNETIC INDUCTION.

431. Theory of a hollow spherical shell 56
432. Case when κ is large 58
433. When $i = 1$ 58
434. Corresponding case in two dimensions. Fig. XV 59
435. Case of a solid sphere, the coefficients of magnetization being different in different directions 60
CONTENTS

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>436.</td>
<td>The nine coefficients reduced to six. Fig. XVI</td>
<td>61</td>
</tr>
<tr>
<td>437.</td>
<td>Theory of an ellipsoid acted on by a uniform magnetic force</td>
<td>62</td>
</tr>
<tr>
<td>438.</td>
<td>Cases of very flat and of very long ellipsoids</td>
<td>65</td>
</tr>
<tr>
<td>439.</td>
<td>Statement of problems solved by Neumann, Kirchhoff, and Green</td>
<td>68</td>
</tr>
<tr>
<td>440.</td>
<td>Method of approximation to a solution of the general problem when κ is very small.</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Magnetic bodies tend towards places of most intense magnetic force, and diamagnetic bodies tend to places of weakest force</td>
<td></td>
</tr>
<tr>
<td>441.</td>
<td>On ship's magnetism</td>
<td>70</td>
</tr>
</tbody>
</table>

CHAPTER VI.

WEBER'S THEORY OF INDUCED MAGNETISM.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>442.</td>
<td>Experiments indicating a maximum of magnetization</td>
<td>74</td>
</tr>
<tr>
<td>443.</td>
<td>Weber's mathematical theory of temporary magnetization</td>
<td>75</td>
</tr>
<tr>
<td>444.</td>
<td>Modification of the theory to account for residual magnetization</td>
<td>79</td>
</tr>
<tr>
<td>445.</td>
<td>Explanation of phenomena by the modified theory</td>
<td>81</td>
</tr>
<tr>
<td>446.</td>
<td>Magnetization, demagnetization, and remagnetization</td>
<td>84</td>
</tr>
<tr>
<td>447.</td>
<td>Effects of magnetization on the dimensions of the magnet</td>
<td>86</td>
</tr>
<tr>
<td>448.</td>
<td>Experiments of Joule</td>
<td>87</td>
</tr>
</tbody>
</table>

CHAPTER VII.

MAGNETIC MEASUREMENTS.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>449.</td>
<td>Suspension of the magnet</td>
<td>89</td>
</tr>
<tr>
<td>450.</td>
<td>Methods of observation by mirror and scale. Photographic method</td>
<td>90</td>
</tr>
<tr>
<td>451.</td>
<td>Principle of collimation employed in the Kew magnetometer</td>
<td>94</td>
</tr>
<tr>
<td>452.</td>
<td>Determination of the axis of a magnet and of the direction of the horizontal component of the magnetic force</td>
<td>95</td>
</tr>
<tr>
<td>453.</td>
<td>Measurement of the moment of a magnet and of the intensity of the horizontal component of magnetic force</td>
<td>98</td>
</tr>
<tr>
<td>454.</td>
<td>Observations of deflexion</td>
<td>100</td>
</tr>
<tr>
<td>455.</td>
<td>Method of tangents and method of sines</td>
<td>102</td>
</tr>
<tr>
<td>456.</td>
<td>Observation of vibrations</td>
<td>103</td>
</tr>
<tr>
<td>457.</td>
<td>Elimination of the effects of magnetic induction</td>
<td>105</td>
</tr>
<tr>
<td>458.</td>
<td>Statical method of measuring the horizontal force</td>
<td>107</td>
</tr>
<tr>
<td>459.</td>
<td>Bifilar suspension</td>
<td>108</td>
</tr>
<tr>
<td>460.</td>
<td>System of observations in an observatory</td>
<td>112</td>
</tr>
<tr>
<td>461.</td>
<td>Observation of the dip-circle</td>
<td>112</td>
</tr>
</tbody>
</table>
CONTENTS.

Art. Page
462. J. A. Broun's method of correction 116
463. Joule's suspension 116
464. Balance vertical force magnetometer 118

CHAPTER VIII.

ON TERRESTRIAL MAGNETISM.

465. Elements of the magnetic force 121
466. Combination of the results of the magnetic survey of a country 122
467. Deduction of the expansion of the magnetic potential of the earth in spherical harmonics 124
468. Definition of the earth's magnetic poles. They are not at the extremities of the magnetic axis. False poles. They do not exist on the earth's surface 124
469. Gauss' calculation of the 24 coefficients of the first four harmonics 125
470. Separation of external from internal causes of magnetic force 125
471. The solar and lunar variations 126
472. The periodic variations 126
473. The disturbances and their period of 11 years 127
474. Reflexions on magnetic investigations 127

PART IV.

ELECTROMAGNETISM.

CHAPTER I.

ELECTROMAGNETIC FORCE.

475. Örsted's discovery of the action of an electric current on a magnet 129
476. The space near an electric current is a magnetic field 129
477. Action of a vertical current on a magnet 130
478. Proof that the force due to a straight current of indefinitely great length varies inversely as the distance 130
479. Electromagnetic measure of the current 131
480. Potential function due to a straight current. It is a function of many values 131
481. The action of this current compared with that of a magnetic shell having an infinite straight edge and extending on one side of this edge to infinity 132
482. A small circuit acts at a great distance like a magnet 132
483. Deduction from this of the action of a closed circuit of any form and size on any point not in the current itself 132
484. Comparison between the circuit and a magnetic shell 133
485. Magnetic potential of a closed circuit 134
486. Conditions of continuous rotation of a magnet about a current 134
487. Form of the magnetic equipotential surfaces due to a closed circuit. Fig. XVIII 135
488. Mutual action between any system of magnets and a closed current 136
489. Reaction on the circuit 136
490. Force acting on a wire carrying a current and placed in the magnetic field 138
491. Theory of electromagnetic rotations 139
492. Action of one electric circuit on the whole or any portion of another 141
493. Our method of investigation is that of Faraday 141
494. Illustration of the method applied to parallel currents 142
495. Dimensions of the unit of current 142
496. The wire is urged from the side on which its magnetic action strengthens the magnetic force and towards the side on which it opposes it 143
497. Action of an infinite straight current on any current in its plane 143
498. Statement of the laws of electromagnetic force. Magnetic force due to a current 144
499. Generality of these laws 145
500. Force acting on a circuit placed in the magnetic field 145
501. Electromagnetic force is a mechanical force acting on the conductor, not on the electric current itself 146

CHAPTER II.

AMPIÈRE'S INVESTIGATION OF THE MUTUAL ACTION OF ELECTRIC CURRENTS.

502. Ampère's investigation of the law of force between the elements of electric currents 147